捷徑

TensorDictModuleBase

class tensordict.nn.TensorDictModuleBase(*args, **kwargs)

TensorDict 模組的基礎類別。

TensorDictModule 子類別的特徵是 in_keysout_keys 鍵列表,指示要讀取哪些輸入條目,以及預期要寫入哪些輸出條目。

forward 方法的輸入/輸出簽名應始終遵循以下慣例

>>> tensordict_out = module.forward(tensordict_in)
static is_tdmodule_compatible(module)

檢查模組是否與 TensorDictModule API 相容。

reset_out_keys()

out_keys 屬性重設為其原始值。

傳回:相同的模組,具有其原始 out_keys 值。

範例

>>> from tensordict import TensorDict
>>> from tensordict.nn import TensorDictModule, TensorDictSequential
>>> import torch
>>> mod = TensorDictModule(lambda x, y: (x+2, y+2), in_keys=["a", "b"], out_keys=["c", "d"])
>>> mod.select_out_keys("d")
>>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, [])
>>> mod(td)
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
>>> mod.reset_out_keys()
>>> mod(td)
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
reset_parameters_recursive(parameters: Optional[TensorDictBase] = None) Optional[TensorDictBase]

遞迴地重設模組及其子模組的參數。

參數:

parameters (參數的 TensorDict, 選用) – 如果設定為 None,模組將使用 self.parameters() 進行重設。否則,我們將就地重設 tensordict 中的參數。這對於參數未儲存在模組本身的函數模組很有用。

傳回:

新的參數的 tensordict,僅當 parameters 不是 None 時。

範例

>>> from tensordict.nn import TensorDictModule
>>> from torch import nn
>>> net = nn.Sequential(nn.Linear(2,3), nn.ReLU())
>>> old_param = net[0].weight.clone()
>>> module = TensorDictModule(net, in_keys=['bork'], out_keys=['dork'])
>>> module.reset_parameters()
>>> (old_param == net[0].weight).any()
tensor(False)

此方法也支援函數參數取樣

>>> from tensordict import TensorDict
>>> from tensordict.nn import TensorDictModule
>>> from torch import nn
>>> net = nn.Sequential(nn.Linear(2,3), nn.ReLU())
>>> module = TensorDictModule(net, in_keys=['bork'], out_keys=['dork'])
>>> params = TensorDict.from_module(module)
>>> old_params = params.clone(recurse=True)
>>> module.reset_parameters(params)
>>> (old_params == params).any()
False
select_out_keys(*out_keys) TensorDictModuleBase

選擇將在輸出 tensordict 中找到的鍵。

當您想要去除複雜圖表中的中間鍵,或當這些鍵的存在可能觸發意外行為時,這非常有用。

原始的 out_keys 仍然可以透過 module.out_keys_source 存取。

參數:

*out_keys (字串序列字串元組) – 應該在輸出 tensordict 中找到的 out_keys。

回傳:相同的模組,以更新後的 out_keys 進行原地修改。

最簡單的用法是使用 TensorDictModule

範例

>>> from tensordict import TensorDict
>>> from tensordict.nn import TensorDictModule, TensorDictSequential
>>> import torch
>>> mod = TensorDictModule(lambda x, y: (x+2, y+2), in_keys=["a", "b"], out_keys=["c", "d"])
>>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, [])
>>> mod(td)
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
>>> mod.select_out_keys("d")
>>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, [])
>>> mod(td)
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

此功能也適用於分派的引數: .. rubric:: 範例

>>> mod(torch.zeros(()), torch.ones(()))
tensor(2.)

此變更將會原地發生(也就是說,將回傳具有更新後 out_keys 列表的相同模組)。 可以使用 TensorDictModuleBase.reset_out_keys() 方法還原。

範例

>>> mod.reset_out_keys()
>>> mod(TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, []))
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

這也適用於其他類別,例如 Sequential: .. rubric:: 範例

>>> from tensordict.nn import TensorDictSequential
>>> seq = TensorDictSequential(
...     TensorDictModule(lambda x: x+1, in_keys=["x"], out_keys=["y"]),
...     TensorDictModule(lambda x: x+1, in_keys=["y"], out_keys=["z"]),
... )
>>> td = TensorDict({"x": torch.zeros(())}, [])
>>> seq(td)
TensorDict(
    fields={
        x: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        y: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        z: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
>>> seq.select_out_keys("z")
>>> td = TensorDict({"x": torch.zeros(())}, [])
>>> seq(td)
TensorDict(
    fields={
        x: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        z: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

文件

存取 PyTorch 的完整開發者文件

檢視文件

教學

取得適合初學者和進階開發者的深入教學

檢視教學

資源

尋找開發資源並獲得問題解答

檢視資源