tensordict.nn.make_tensordict¶
- tensordict.nn.make_tensordict(input_dict: Optional[dict[str, torch.Tensor]] = None, batch_size: Optional[Union[Sequence[int], Size, int]] = None, device: Optional[Union[device, str, int]] = None, **kwargs: Tensor) TensorDict ¶
傳回從關鍵字引數或輸入字典建立的 TensorDict。
如果未指定
batch_size
,則傳回可能的最大批次大小。此函數也適用於巢狀字典,或可用於判斷巢狀 tensordict 的批次大小。
- 參數:
input_dict (dictionary, optional) – 用作資料來源的字典(相容於巢狀鍵)。
**kwargs (TensorDict 或 torch.Tensor) – 作為資料來源的關鍵字引數(與巢狀鍵不相容)。
batch_size (iterable of int, optional) – tensordict 的批次大小。
device (torch.device 或 相容類型, optional) – TensorDict 的裝置。
範例
>>> input_dict = {"a": torch.randn(3, 4), "b": torch.randn(3)} >>> print(make_tensordict(input_dict)) TensorDict( fields={ a: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False) >>> # alternatively >>> td = make_tensordict(**input_dict) >>> # nested dict: the nested TensorDict can have a different batch-size >>> # as long as its leading dims match. >>> input_dict = {"a": torch.randn(3), "b": {"c": torch.randn(3, 4)}} >>> print(make_tensordict(input_dict)) TensorDict( fields={ a: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False), b: TensorDict( fields={ c: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3, 4]), device=None, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False) >>> # we can also use this to work out the batch sie of a tensordict >>> input_td = TensorDict({"a": torch.randn(3), "b": {"c": torch.randn(3, 4)}}, []) >>> print(make_tensordict(input_td)) TensorDict( fields={ a: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False), b: TensorDict( fields={ c: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3, 4]), device=None, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False)