注意
前往結尾以下載完整的範例程式碼
使用 torch.compile 後端編譯 BERT¶
此互動式腳本旨在作為 BERT 模型上使用 torch.compile 的 Torch-TensorRT 工作流程範例。
匯入和模型定義¶
import torch
import torch_tensorrt
from transformers import BertModel
# Initialize model with float precision and sample inputs
model = BertModel.from_pretrained("bert-base-uncased").eval().to("cuda")
inputs = [
torch.randint(0, 2, (1, 14), dtype=torch.int32).to("cuda"),
torch.randint(0, 2, (1, 14), dtype=torch.int32).to("cuda"),
]
用於 torch_tensorrt.compile 的選用輸入引數¶
# Enabled precision for TensorRT optimization
enabled_precisions = {torch.float}
# Whether to print verbose logs
debug = True
# Workspace size for TensorRT
workspace_size = 20 << 30
# Maximum number of TRT Engines
# (Lower value allows more graph segmentation)
min_block_size = 7
# Operations to Run in Torch, regardless of converter support
torch_executed_ops = {}
使用 torch.compile 編譯¶
# Define backend compilation keyword arguments
compilation_kwargs = {
"enabled_precisions": enabled_precisions,
"debug": debug,
"workspace_size": workspace_size,
"min_block_size": min_block_size,
"torch_executed_ops": torch_executed_ops,
}
# Build and compile the model with torch.compile, using Torch-TensorRT backend
optimized_model = torch.compile(
model,
backend="torch_tensorrt",
dynamic=False,
options=compilation_kwargs,
)
optimized_model(*inputs)
或者,我們可以透過便利前端執行上述操作,如下所示:torch_tensorrt.compile(model, ir=”torch_compile”, inputs=inputs, **compilation_kwargs)
推論¶
# Does not cause recompilation (same batch size as input)
new_inputs = [
torch.randint(0, 2, (1, 14), dtype=torch.int32).to("cuda"),
torch.randint(0, 2, (1, 14), dtype=torch.int32).to("cuda"),
]
new_outputs = optimized_model(*new_inputs)
# Does cause recompilation (new batch size)
new_inputs = [
torch.randint(0, 2, (4, 14), dtype=torch.int32).to("cuda"),
torch.randint(0, 2, (4, 14), dtype=torch.int32).to("cuda"),
]
new_outputs = optimized_model(*new_inputs)
清除¶
# Finally, we use Torch utilities to clean up the workspace
torch._dynamo.reset()
Cuda 驅動程式錯誤注意事項¶
偶爾,在使用 torch_tensorrt 進行 Dynamo 編譯後退出 Python 執行階段時,可能會遇到 Cuda 驅動程式錯誤。此問題與 https://github.com/NVIDIA/TensorRT/issues/2052 相關,可以透過將編譯/推論包裝在函式中並使用作用域呼叫來解決,如下所示
if __name__ == '__main__':
compile_engine_and_infer()
腳本總執行時間: ( 0 分鐘 0.000 秒)