• 文件 >
  • 使用預訓練模型
捷徑

使用預訓練模型

本教學說明如何在 TorchRL 中使用預訓練模型。

在本教學結束時,您將能夠使用預訓練模型來進行有效率的圖像表示,並對其進行微調。

TorchRL 提供預訓練模型,可用作轉換或作為策略的元件。由於語意相同,因此它們可以在一種或另一種情況下互換使用。在本教學中,我們將使用 R3M (https://arxiv.org/abs/2203.12601),但其他模型 (例如 VIP) 也同樣有效。

import torch.cuda
from tensordict.nn import TensorDictSequential
from torch import nn
from torchrl.envs import R3MTransform, TransformedEnv
from torchrl.envs.libs.gym import GymEnv
from torchrl.modules import Actor

is_fork = multiprocessing.get_start_method() == "fork"
device = (
    torch.device(0)
    if torch.cuda.is_available() and not is_fork
    else torch.device("cpu")
)

讓我們首先建立一個環境。為了簡單起見,我們將使用一個常見的 gym 環境。實際上,這將在更具挑戰性的具體 AI 環境中工作(例如,看看我們的 Habitat 封裝器)。

base_env = GymEnv("Ant-v4", from_pixels=True, device=device)

讓我們獲取我們的預訓練模型。我們透過 download=True 標誌來請求模型的預訓練版本。預設情況下,此標誌處於關閉狀態。接下來,我們將我們的轉換附加到環境中。實際上,將會發生的是,收集的每批資料將會經過轉換,並映射到輸出 tensordict 中的 “r3m_vec” 條目。我們的策略,由單層 MLP 組成,然後將讀取此向量並計算相應的動作。

r3m = R3MTransform(
    "resnet50",
    in_keys=["pixels"],
    download=True,
)
env_transformed = TransformedEnv(base_env, r3m)
net = nn.Sequential(
    nn.LazyLinear(128, device=device),
    nn.Tanh(),
    nn.Linear(128, base_env.action_spec.shape[-1], device=device),
)
policy = Actor(net, in_keys=["r3m_vec"])
Downloading: "https://pytorch.s3.amazonaws.com/models/rl/r3m/r3m_50.pt" to /root/.cache/torch/hub/checkpoints/r3m_50.pt

  0%|          | 0.00/374M [00:00<?, ?B/s]
  4%|▍         | 16.5M/374M [00:00<00:04, 93.6MB/s]
  8%|▊         | 31.2M/374M [00:00<00:03, 99.2MB/s]
 11%|█         | 40.9M/374M [00:00<00:05, 66.8MB/s]
 13%|█▎        | 49.2M/374M [00:00<00:05, 64.0MB/s]
 17%|█▋        | 64.0M/374M [00:00<00:04, 76.0MB/s]
 19%|█▉        | 71.6M/374M [00:01<00:04, 72.4MB/s]
 22%|██▏       | 82.0M/374M [00:01<00:05, 58.1MB/s]
 26%|██▌       | 97.8M/374M [00:01<00:03, 75.2MB/s]
 28%|██▊       | 106M/374M [00:01<00:03, 72.8MB/s]
 31%|███       | 115M/374M [00:01<00:03, 71.5MB/s]
 35%|███▍      | 130M/374M [00:01<00:03, 70.2MB/s]
 37%|███▋      | 138M/374M [00:02<00:03, 65.4MB/s]
 38%|███▊      | 144M/374M [00:02<00:04, 60.4MB/s]
 40%|████      | 150M/374M [00:02<00:05, 40.2MB/s]
 44%|████▍     | 164M/374M [00:02<00:04, 54.2MB/s]
 48%|████▊     | 179M/374M [00:02<00:02, 68.8MB/s]
 50%|████▉     | 186M/374M [00:02<00:02, 68.4MB/s]
 52%|█████▏    | 195M/374M [00:03<00:02, 71.4MB/s]
 54%|█████▍    | 203M/374M [00:03<00:03, 59.8MB/s]
 57%|█████▋    | 212M/374M [00:03<00:02, 62.5MB/s]
 58%|█████▊    | 219M/374M [00:03<00:03, 44.5MB/s]
 61%|██████▏   | 229M/374M [00:03<00:02, 52.5MB/s]
 66%|██████▌   | 246M/374M [00:04<00:02, 63.1MB/s]
 70%|██████▉   | 262M/374M [00:04<00:01, 74.1MB/s]
 72%|███████▏  | 269M/374M [00:04<00:01, 66.1MB/s]
 74%|███████▍  | 277M/374M [00:04<00:02, 40.5MB/s]
 75%|███████▌  | 282M/374M [00:04<00:02, 38.6MB/s]
 78%|███████▊  | 293M/374M [00:05<00:01, 49.1MB/s]
 80%|████████  | 299M/374M [00:05<00:02, 39.0MB/s]
 83%|████████▎ | 311M/374M [00:05<00:01, 38.5MB/s]
 87%|████████▋ | 326M/374M [00:05<00:01, 45.5MB/s]
 88%|████████▊ | 331M/374M [00:06<00:01, 44.1MB/s]
 92%|█████████▏| 344M/374M [00:06<00:00, 50.1MB/s]
 96%|█████████▋| 360M/374M [00:06<00:00, 59.6MB/s]
100%|█████████▉| 373M/374M [00:06<00:00, 57.6MB/s]
100%|██████████| 374M/374M [00:06<00:00, 57.8MB/s]

讓我們檢查策略的參數數量

print("number of params:", len(list(policy.parameters())))
number of params: 4

我們收集 32 個步驟的 rollout 並列印其輸出

rollout = env_transformed.rollout(32, policy)
print("rollout with transform:", rollout)
rollout with transform: TensorDict(
    fields={
        action: Tensor(shape=torch.Size([32, 8]), device=cpu, dtype=torch.float32, is_shared=False),
        done: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                r3m_vec: Tensor(shape=torch.Size([32, 2048]), device=cpu, dtype=torch.float32, is_shared=False),
                reward: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.float32, is_shared=False),
                terminated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                truncated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([32]),
            device=cpu,
            is_shared=False),
        r3m_vec: Tensor(shape=torch.Size([32, 2048]), device=cpu, dtype=torch.float32, is_shared=False),
        terminated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        truncated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([32]),
    device=cpu,
    is_shared=False)

為了進行微調,我們在使參數可訓練後,將轉換整合到策略中。實際上,將其限制為參數的子集(例如 MLP 的最後一層)可能更明智。

r3m.train()
policy = TensorDictSequential(r3m, policy)
print("number of params after r3m is integrated:", len(list(policy.parameters())))
number of params after r3m is integrated: 163

再次,我們使用 R3M 收集 rollout。輸出的結構略有變化,因為現在環境傳回的是像素(而不是嵌入)。嵌入 “r3m_vec” 是我們策略的中間結果。

rollout = base_env.rollout(32, policy)
print("rollout, fine tuning:", rollout)
rollout, fine tuning: TensorDict(
    fields={
        action: Tensor(shape=torch.Size([32, 8]), device=cpu, dtype=torch.float32, is_shared=False),
        done: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                pixels: Tensor(shape=torch.Size([32, 480, 480, 3]), device=cpu, dtype=torch.uint8, is_shared=False),
                reward: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.float32, is_shared=False),
                terminated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                truncated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([32]),
            device=cpu,
            is_shared=False),
        r3m_vec: Tensor(shape=torch.Size([32, 2048]), device=cpu, dtype=torch.float32, is_shared=False),
        terminated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        truncated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([32]),
    device=cpu,
    is_shared=False)

我們能夠輕鬆地將轉換從 env 交換到策略,這是因為兩者都像 TensorDictModule 一樣運作:它們有一組 “in_keys”“out_keys”,可以輕鬆地在不同上下文中讀取和寫入輸出。

為了總結本教學,讓我們看看我們如何使用 R3M 來讀取儲存在回放緩衝區中的圖像(例如,在離線 RL 環境中)。首先,讓我們建立我們的資料集

from torchrl.data import LazyMemmapStorage, ReplayBuffer

storage = LazyMemmapStorage(1000)
rb = ReplayBuffer(storage=storage, transform=r3m)

我們現在可以收集資料(為了我們的目的而隨機 rollout)並用它來填滿回放緩衝區

total = 0
while total < 1000:
    tensordict = base_env.rollout(1000)
    rb.extend(tensordict)
    total += tensordict.numel()

讓我們檢查一下我們的回放緩衝區儲存看起來如何。它不應包含 “r3m_vec” 條目,因為我們尚未使用它

print("stored data:", storage._storage)
stored data: TensorDict(
    fields={
        action: MemoryMappedTensor(shape=torch.Size([1000, 8]), device=cpu, dtype=torch.float32, is_shared=False),
        done: MemoryMappedTensor(shape=torch.Size([1000, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        next: TensorDict(
            fields={
                done: MemoryMappedTensor(shape=torch.Size([1000, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                pixels: MemoryMappedTensor(shape=torch.Size([1000, 480, 480, 3]), device=cpu, dtype=torch.uint8, is_shared=False),
                reward: MemoryMappedTensor(shape=torch.Size([1000, 1]), device=cpu, dtype=torch.float32, is_shared=False),
                terminated: MemoryMappedTensor(shape=torch.Size([1000, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                truncated: MemoryMappedTensor(shape=torch.Size([1000, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([1000]),
            device=cpu,
            is_shared=False),
        pixels: MemoryMappedTensor(shape=torch.Size([1000, 480, 480, 3]), device=cpu, dtype=torch.uint8, is_shared=False),
        terminated: MemoryMappedTensor(shape=torch.Size([1000, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        truncated: MemoryMappedTensor(shape=torch.Size([1000, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([1000]),
    device=cpu,
    is_shared=False)

在採樣時,資料將會經過 R3M 轉換,從而為我們提供我們想要的已處理資料。透過這種方式,我們可以在由圖像組成的資料集上離線訓練演算法

batch = rb.sample(32)
print("data after sampling:", batch)
data after sampling: TensorDict(
    fields={
        action: Tensor(shape=torch.Size([32, 8]), device=cpu, dtype=torch.float32, is_shared=False),
        done: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                pixels: Tensor(shape=torch.Size([32, 480, 480, 3]), device=cpu, dtype=torch.uint8, is_shared=False),
                reward: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.float32, is_shared=False),
                terminated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                truncated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([32]),
            device=cpu,
            is_shared=False),
        r3m_vec: Tensor(shape=torch.Size([32, 2048]), device=cpu, dtype=torch.float32, is_shared=False),
        terminated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        truncated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([32]),
    device=cpu,
    is_shared=False)

腳本的總執行時間: (0 分鐘 55.393 秒)

估計的記憶體使用量: 2354 MB

圖庫由 Sphinx-Gallery 產生

文件

取得 PyTorch 的完整開發者文件

檢視文件

教學

取得適合初學者和進階開發者的深入教學

檢視教學

資源

尋找開發資源並取得您的問題解答

檢視資源