TensorDictMaxValueWriter¶
- class torchrl.data.replay_buffers.TensorDictMaxValueWriter(rank_key=None, reduction: str = 'sum', **kwargs)[原始碼]¶
一個 Writer 類別,用於可組合的 replay buffers,基於某些排名鍵保留頂部元素。
- 參數:
rank_key (str or str 的 tuple) – 用於對元素進行排名的鍵。預設為
("next", "reward")
。reduction (str) – 如果排名鍵有多個元素,則要使用的縮減方法。可以是
"max"
、"min"
、"mean"
、"median"
或"sum"
。
範例
>>> import torch >>> from tensordict import TensorDict >>> from torchrl.data import LazyTensorStorage, TensorDictReplayBuffer, TensorDictMaxValueWriter >>> from torchrl.data.replay_buffers.samplers import SamplerWithoutReplacement >>> rb = TensorDictReplayBuffer( ... storage=LazyTensorStorage(1), ... sampler=SamplerWithoutReplacement(), ... batch_size=1, ... writer=TensorDictMaxValueWriter(rank_key="key"), ... ) >>> td = TensorDict({ ... "key": torch.tensor(range(10)), ... "obs": torch.tensor(range(10)) ... }, batch_size=10) >>> rb.extend(td) >>> print(rb.sample().get("obs").item()) 9 >>> td = TensorDict({ ... "key": torch.tensor(range(10, 20)), ... "obs": torch.tensor(range(10, 20)) ... }, batch_size=10) >>> rb.extend(td) >>> print(rb.sample().get("obs").item()) 19 >>> td = TensorDict({ ... "key": torch.tensor(range(10)), ... "obs": torch.tensor(range(10)) ... }, batch_size=10) >>> rb.extend(td) >>> print(rb.sample().get("obs").item()) 19
注意
此類別與具有多個維度的儲存體不相容。 這並不意味著禁止儲存 trajectories,而是儲存的 trajectories 必須基於每個 trajectory 儲存。 以下是一些類別的有效和無效用法的範例。 首先,一個平面 buffer,我們在其中儲存個別的轉換
>>> from torchrl.data import TensorStorage >>> # Simplest use case: data comes in 1d and is stored as such >>> data = TensorDict({ ... "obs": torch.zeros(10, 3), ... "reward": torch.zeros(10, 1), ... }, batch_size=[10]) >>> rb = TensorDictReplayBuffer( ... storage=LazyTensorStorage(max_size=100), ... writer=TensorDictMaxValueWriter(rank_key="reward") ... ) >>> # We initialize the buffer: a total of 100 *transitions* can be stored >>> rb.extend(data) >>> # Samples 5 *transitions* at random >>> sample = rb.sample(5) >>> assert sample.shape == (5,)
其次,一個我們儲存 trajectories 的 buffer。 最大訊號會在每個批次中聚合(例如,每個 rollout 的獎勵都會被加總)
>>> # One can also store batches of data, each batch being a sub-trajectory >>> env = ParallelEnv(2, lambda: GymEnv("Pendulum-v1")) >>> # Get a batch of [2, 10] -- format is [Batch, Time] >>> rollout = env.rollout(max_steps=10) >>> rb = TensorDictReplayBuffer( ... storage=LazyTensorStorage(max_size=100), ... writer=TensorDictMaxValueWriter(rank_key="reward") ... ) >>> # We initialize the buffer: a total of 100 *trajectories* (!) can be stored >>> rb.extend(rollout) >>> # Sample 5 trajectories at random >>> sample = rb.sample(5) >>> assert sample.shape == (5, 10)
如果資料以批次形式傳入,但需要平面 buffer,我們可以簡單地在擴充 buffer 之前將資料扁平化
>>> rb = TensorDictReplayBuffer( ... storage=LazyTensorStorage(max_size=100), ... writer=TensorDictMaxValueWriter(rank_key="reward") ... ) >>> # We initialize the buffer: a total of 100 *transitions* can be stored >>> rb.extend(rollout.reshape(-1)) >>> # Sample 5 trajectories at random >>> sample = rb.sample(5) >>> assert sample.shape == (5,)
不可能建立一個沿時間維度擴充的 buffer,這通常是使用具有 trajectories 批次的 buffers 的建議方式。 由於 trajectories 是重疊的,因此很難(如果不是不可能)聚合獎勵值並比較它們。 此建構函式無效(請注意 ndim 引數)
>>> rb = TensorDictReplayBuffer( ... storage=LazyTensorStorage(max_size=100, ndim=2), # Breaks! ... writer=TensorDictMaxValueWriter(rank_key="reward") ... )
- add(data: Any) int | torch.Tensor [原始碼]¶
在適當的索引處插入單個資料元素,並傳回該索引。
傳遞到此模組的資料中的
rank_key
應該結構化為 []。 如果它有更多維度,它將使用reduction
方法縮減為單個值。