捷徑

UnityMLAgentsEnv

torchrl.envs.UnityMLAgentsEnv(*args, **kwargs)[原始碼]

Unity ML-Agents 環境包裝器。

GitHub: https://github.com/Unity-Technologies/ml-agents

文件: https://unity-technologies.github.io/ml-agents/Python-LLAPI/

此類別可以提供 mlagents_envs.environment.UnityEnvironment 類別提供的任何可選初始化引數。 有關這些引數的列表,請參閱: https://unity-technologies.github.io/ml-agents/Python-LLAPI-Documentation/#__init__

如果同時給定 file_nameregistered_name,則會引發錯誤。

如果既未給定 file_name 也未給定``registered_name``,環境設定會等待 localhost 埠,且使用者必須執行 Unity ML-Agents 環境二進位檔才能連接到它。

參數:
  • file_name (str, optional) – 如果提供,則為 Unity 環境二進位檔的路徑。預設為 None

  • registered_name (str, optional) – 如果提供,則 Unity 環境二進位檔會從預設的 ML-Agents 登錄檔中載入。註冊環境的列表位於 available_envs 中。預設為 None

關鍵字引數:
  • device (torch.device, optional) – 如果提供,則為要轉換資料的裝置。預設為 None

  • batch_size (torch.Size, optional) – 環境的批次大小。預設為 torch.Size([])

  • allow_done_after_reset (bool, optional) – 如果 True,則允許環境在呼叫 reset() 後立即處於 done 狀態。預設值為 False

  • group_map (MarlGroupMapTypeDict[str, List[str]]], optional) – 如何在 tensordict 中分組 agents 以進行輸入/輸出。詳情請參閱 MarlGroupMapType。如果未指定,agents 會根據 Unity 環境提供的群組 ID 進行分組。預設值為 None

  • categorical_actions (bool, optional) – 如果 True,categorical specs 將被轉換為 TorchRL 等效項 (torchrl.data.Categorical),否則將使用 one-hot encoding (torchrl.data.OneHot)。預設值為 False

變數:

available_envs – 可用於構建的已註冊環境列表

範例

>>> from torchrl.envs import UnityMLAgentsEnv
>>> env = UnityMLAgentsEnv(registered_name='3DBall')
>>> td = env.reset()
>>> td = env.step(td.update(env.full_action_spec.rand()))
>>> td
TensorDict(
    fields={
        group_0: TensorDict(
            fields={
                agent_0: TensorDict(
                    fields={
                        VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                        continuous_action: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
                        done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False),
                agent_10: TensorDict(
                    fields={
                        VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                        continuous_action: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
                        done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False),
                agent_11: TensorDict(
                    fields={
                        VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                        continuous_action: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
                        done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False),
                agent_1: TensorDict(
                    fields={
                        VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                        continuous_action: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
                        done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False),
                agent_2: TensorDict(
                    fields={
                        VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                        continuous_action: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
                        done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False),
                agent_3: TensorDict(
                    fields={
                        VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                        continuous_action: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
                        done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False),
                agent_4: TensorDict(
                    fields={
                        VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                        continuous_action: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
                        done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False),
                agent_5: TensorDict(
                    fields={
                        VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                        continuous_action: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
                        done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False),
                agent_6: TensorDict(
                    fields={
                        VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                        continuous_action: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
                        done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False),
                agent_7: TensorDict(
                    fields={
                        VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                        continuous_action: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
                        done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False),
                agent_8: TensorDict(
                    fields={
                        VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                        continuous_action: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
                        done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False),
                agent_9: TensorDict(
                    fields={
                        VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                        continuous_action: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=False),
                        done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                        truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False)},
            batch_size=torch.Size([]),
            device=None,
            is_shared=False),
        next: TensorDict(
            fields={
                group_0: TensorDict(
                    fields={
                        agent_0: TensorDict(
                            fields={
                                VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                                done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                group_reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=None,
                            is_shared=False),
                        agent_10: TensorDict(
                            fields={
                                VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                                done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                group_reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=None,
                            is_shared=False),
                        agent_11: TensorDict(
                            fields={
                                VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                                done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                group_reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=None,
                            is_shared=False),
                        agent_1: TensorDict(
                            fields={
                                VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                                done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                group_reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=None,
                            is_shared=False),
                        agent_2: TensorDict(
                            fields={
                                VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                                done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                group_reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=None,
                            is_shared=False),
                        agent_3: TensorDict(
                            fields={
                                VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                                done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                group_reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=None,
                            is_shared=False),
                        agent_4: TensorDict(
                            fields={
                                VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                                done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                group_reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=None,
                            is_shared=False),
                        agent_5: TensorDict(
                            fields={
                                VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                                done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                group_reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=None,
                            is_shared=False),
                        agent_6: TensorDict(
                            fields={
                                VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                                done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                group_reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=None,
                            is_shared=False),
                        agent_7: TensorDict(
                            fields={
                                VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                                done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                group_reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=None,
                            is_shared=False),
                        agent_8: TensorDict(
                            fields={
                                VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                                done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                group_reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=None,
                            is_shared=False),
                        agent_9: TensorDict(
                            fields={
                                VectorSensor_size8: Tensor(shape=torch.Size([8]), device=cpu, dtype=torch.float32, is_shared=False),
                                done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                group_reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                                terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                                truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=None,
                            is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False)},
            batch_size=torch.Size([]),
            device=None,
            is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

文件

存取 PyTorch 的完整開發者文件

檢視文件

教學

取得適合初學者和進階開發者的深入教學

檢視教學

資源

尋找開發資源並獲得您的問題解答

檢視資源