快捷方式

ActionDiscretizer

class torchrl.envs.transforms.ActionDiscretizer(num_intervals: int | torch.Tensor, action_key: NestedKey = 'action', out_action_key: Optional[NestedKey] = None, sampling=None, categorical: bool = True)[原始碼]

一種將連續動作空間離散化的轉換。

這種轉換使得可以在具有連續動作空間的環境中使用為離散動作空間設計的演算法,例如 DQN。

參數:
  • num_intervals (inttorch.Tensor) – 動作空間中每個元素的離散值數量。如果提供單一整數,則所有動作項目都將以相同數量的元素進行切片。如果提供張量,則它必須具有與動作空間相同數量的元素(即,num_intervals 張量的長度必須與動作空間的最後一個維度匹配)。

  • action_key (NestedKey選擇性) – 要使用的動作鍵。指向父環境的動作(浮點動作)。預設值為 "action"

  • out_action_key (NestedKey選擇性) – 應寫入離散動作的鍵。如果提供 None,則預設為 action_key 的值。如果兩個鍵不匹配,則連續的 action_spec 會從 full_action_spec 環境屬性移動到 full_state_spec 容器,因為只有離散動作才應被取樣以採取動作。提供 out_action_key 可以確保浮點動作可用於記錄。

  • sampling (取樣) (ActionDiscretizer.SamplingStrategy, 選填) – ActionDiscretizer.SamplingStrategy IntEnum 物件的一個元素 (例如:MEDIANLOWHIGHRANDOM)。指示如何在提供的區間內對連續動作進行取樣。

  • categorical (類別型) (bool, 選填) – 如果 False,則使用 one-hot 編碼。預設為 True

範例

>>> from torchrl.envs import GymEnv, check_env_specs
>>> import torch
>>> base_env = GymEnv("HalfCheetah-v4")
>>> num_intervals = torch.arange(5, 11)
>>> categorical = True
>>> sampling = ActionDiscretizer.SamplingStrategy.MEDIAN
>>> t = ActionDiscretizer(
...     num_intervals=num_intervals,
...     categorical=categorical,
...     sampling=sampling,
...     out_action_key="action_disc",
... )
>>> env = base_env.append_transform(t)
TransformedEnv(
    env=GymEnv(env=HalfCheetah-v4, batch_size=torch.Size([]), device=cpu),
    transform=ActionDiscretizer(
        num_intervals=tensor([ 5,  6,  7,  8,  9, 10]),
        action_key=action,
        out_action_key=action_disc,,
        sampling=0,
        categorical=True))
>>> check_env_specs(env)
>>> # Produce a rollout
>>> r = env.rollout(4)
>>> print(r)
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([4, 6]), device=cpu, dtype=torch.float32, is_shared=False),
        action_disc: Tensor(shape=torch.Size([4, 6]), device=cpu, dtype=torch.int64, is_shared=False),
        done: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        next: TensorDict(
            fields={
                done: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                observation: Tensor(shape=torch.Size([4, 17]), device=cpu, dtype=torch.float64, is_shared=False),
                reward: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.float32, is_shared=False),
                terminated: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool, is_shared=False),
                truncated: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([4]),
            device=cpu,
            is_shared=False),
        observation: Tensor(shape=torch.Size([4, 17]), device=cpu, dtype=torch.float64, is_shared=False),
        terminated: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool, is_shared=False),
        truncated: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([4]),
    device=cpu,
    is_shared=False)
>>> assert r["action"].dtype == torch.float
>>> assert r["action_disc"].dtype == torch.int64
>>> assert (r["action"] < base_env.action_spec.high).all()
>>> assert (r["action"] > base_env.action_spec.low).all()
class SamplingStrategy(value)[原始碼]

ActionDiscretizer 的取樣策略。

transform_input_spec(input_spec)[原始碼]

轉換輸入規格,使產生的規格符合轉換對應。

參數:

input_spec (輸入規格) (TensorSpec) – 轉換前的規格

回傳:

轉換後預期的規格

文件

取得 PyTorch 的完整開發人員文件

檢視文件

教學課程

取得針對初學者和高級開發人員的深入教學課程

檢視教學課程

資源

尋找開發資源並獲得您的問題解答

檢視資源