DDPGLoss¶
- class torchrl.objectives.DDPGLoss(*args, **kwargs)[source]¶
DDPG 損失類別。
- 參數:
actor_network (TensorDictModule) – 策略運算元。
value_network (TensorDictModule) – Q 值運算元。
loss_function (str) – 值差異的損失函數。可以是 “l1”、“l2” 或 “smooth_l1” 之一。
delay_actor (bool, optional) – 是否將目標 actor 網路與用於資料收集的 actor 網路分開。預設值為
False
。delay_value (bool, optional) – 是否將目標 value 網路與用於資料收集的 value 網路分開。預設值為
True
。separate_losses (bool, optional) – 如果
True
,則策略和評論家之間的共享參數將僅在策略損失上進行訓練。預設值為False
,即梯度會傳播到策略和評論家損失的共享參數。reduction (str, optional) – 指定要應用於輸出的縮減:
"none"
|"mean"
|"sum"
。"none"
:不套用任何縮減,"mean"
:輸出的總和將除以輸出中的元素數量,"sum"
:將對輸出求和。預設值:"mean"
。
範例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.tensordict_module.actors import Actor, ValueOperator >>> from torchrl.objectives.ddpg import DDPGLoss >>> from tensordict import TensorDict >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> actor = Actor(spec=spec, module=nn.Linear(n_obs, n_act)) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> value = ValueOperator( ... module=module, ... in_keys=["observation", "action"]) >>> loss = DDPGLoss(actor, value) >>> batch = [2, ] >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": spec.rand(batch), ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1), ... ("next", "observation"): torch.randn(*batch, n_obs), ... }, batch) >>> loss(data) TensorDict( fields={ loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), pred_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), pred_value_max: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), target_value_max: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此類別也與非基於 tensordict 的模組相容,並且可以在不求助於任何 tensordict 相關的原始資料的情況下使用。在這種情況下,預期的關鍵字參數是:
["next_reward", "next_done", "next_terminated"]
+ actor_network 和 value_network 的 in_keys。傳回值是一個 tensors 的 tuple,順序如下:["loss_actor", "loss_value", "pred_value", "target_value", "pred_value_max", "target_value_max"]
範例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.tensordict_module.actors import Actor, ValueOperator >>> from torchrl.objectives.ddpg import DDPGLoss >>> _ = torch.manual_seed(42) >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> actor = Actor(spec=spec, module=nn.Linear(n_obs, n_act)) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> value = ValueOperator( ... module=module, ... in_keys=["observation", "action"]) >>> loss = DDPGLoss(actor, value) >>> loss_actor, loss_value, pred_value, target_value, pred_value_max, target_value_max = loss( ... observation=torch.randn(n_obs), ... action=spec.rand(), ... next_done=torch.zeros(1, dtype=torch.bool), ... next_terminated=torch.zeros(1, dtype=torch.bool), ... next_observation=torch.randn(n_obs), ... next_reward=torch.randn(1)) >>> loss_actor.backward()
也可以使用
DDPGLoss.select_out_keys()
方法過濾輸出鍵。範例
>>> loss.select_out_keys('loss_actor', 'loss_value') >>> loss_actor, loss_value = loss( ... observation=torch.randn(n_obs), ... action=spec.rand(), ... next_done=torch.zeros(1, dtype=torch.bool), ... next_terminated=torch.zeros(1, dtype=torch.bool), ... next_observation=torch.randn(n_obs), ... next_reward=torch.randn(1)) >>> loss_actor.backward()
- forward(tensordict: TensorDictBase = None) TensorDict [原始碼]¶
計算從回放緩衝區取樣的 tensordict 的 DDPG 損失。
- 此函數還會寫入一個 “td_error” 鍵,優先回放緩衝區可以使用它來分配
tensordict 中項目的優先順序。
- 參數:
tensordict (TensorDictBase) – 具有鍵 [“done”, “terminated”, “reward”] 以及 actor 和 value 網路的 in_keys 的 tensordict。
- 回傳:
一個包含 DDPG 損失的 2 個張量的 tuple。
- make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[原始碼]¶
Value-function 建構子。
如果需要非預設的 value function,則必須使用此方法建構。
- 參數:
value_type (ValueEstimators) – 一個
ValueEstimators
列舉類型,指示要使用的 value function。 如果未提供,將使用儲存在default_value_estimator
屬性中的預設值。 產生的 value estimator 類別將在self.value_type
中註冊,以便將來進行改進。**hyperparams – 用於 value function 的超參數。 如果未提供,將使用
default_value_kwargs()
指示的值。
範例
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> # updating the parameters of the default value estimator >>> dqn_loss.make_value_estimator(gamma=0.9) >>> dqn_loss.make_value_estimator( ... ValueEstimators.TD1, ... gamma=0.9) >>> # if we want to change the gamma value >>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)