REDQLoss¶
- class torchrl.objectives.REDQLoss(*args, **kwargs)[source]¶
REDQ Loss 模組。
REDQ (RANDOMIZED ENSEMBLED DOUBLE Q-LEARNING: LEARNING FAST WITHOUT A MODEL https://openreview.net/pdf?id=AY8zfZm0tDd) 推廣了使用 Q 值函數集成來訓練類似 SAC 演算法的想法。
- 參數:
actor_network (TensorDictModule) – 要訓練的 actor
qvalue_network (TensorDictModule) –
單個 Q 值網路或 Q 值網路列表。如果提供了 qvalue_network 的單個實例,它將被複製
num_qvalue_nets
次。如果傳遞了一個模組列表,它們的參數將被堆疊,除非它們共享相同的身份(在這種情況下,原始參數將被展開)。警告
如果傳遞了一個參數列表,它將 __不會__ 與策略參數進行比較,並且所有參數都將被視為未綁定。
- 關鍵字參數:
num_qvalue_nets (int, optional) – 要訓練的 Q 值網路數量。預設值為
10
。sub_sample_len (int, optional) – 用於評估下一個狀態值的 Q 值網路的子樣本數量。預設值為
2
。loss_function (str, optional) – 用於 Q 值的損失函數。可以是
"smooth_l1"
,"l2"
,"l1"
其中之一,預設值為"smooth_l1"
。alpha_init (float, optional) – 初始 entropy 乘數。預設值為
1.0
。min_alpha (float, optional) – alpha 的最小值。預設值為
0.1
。max_alpha (float, optional) – alpha 的最大值。預設值為
10.0
。action_spec (TensorSpec, optional) – action tensor spec。如果未提供且目標 entropy 為
"auto"
,則會從 actor 取得。fixed_alpha (bool, optional) – 是否訓練 alpha 以匹配目標 entropy。預設值為
False
。target_entropy (Union[str, Number], optional) – 隨機策略的目標 entropy。預設值為 "auto"。
delay_qvalue (bool, optional) – 是否將目標 Q value 網路與用於資料收集的 Q value 網路分開。預設值為
False
。gSDE (bool, optional) – 知道是否使用 gSDE 是建立隨機雜訊變數所必需的。預設值為
False
。priority_key (str, optional) – [已棄用,請改用 .set_keys()] 寫入優先順序重播緩衝區的優先順序值的鍵。預設值為
"td_error"
。separate_losses (bool, optional) – 如果
True
,策略和 critic 之間的共享參數將僅在策略損失上進行訓練。預設值為False
,即,梯度會傳播到策略和 critic 損失的共享參數。reduction (str, optional) – 指定要應用於輸出的 reduction:
"none"
|"mean"
|"sum"
。"none"
:不會應用 reduction,"mean"
:輸出的總和將除以輸出中的元素數量,"sum"
:輸出將被總和。預設值:"mean"
。
範例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.redq import REDQLoss >>> from tensordict import TensorDict >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor()) >>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["loc", "scale"], ... spec=spec, ... distribution_class=TanhNormal) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> qvalue = ValueOperator( ... module=module, ... in_keys=['observation', 'action']) >>> loss = REDQLoss(actor, qvalue) >>> batch = [2, ] >>> action = spec.rand(batch) >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": action, ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1), ... ("next", "observation"): torch.randn(*batch, n_obs), ... }, batch) >>> loss(data) TensorDict( fields={ action_log_prob_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), next.state_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), state_action_value_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此類別也與非 tensordict based 模組相容,並且可以在不依賴任何 tensordict 相關的 primitive 的情況下使用。在這種情況下,預期的關鍵字參數為:
["action", "next_reward", "next_done", "next_terminated"]
+ actor 和 qvalue 網路的 in_keys。傳回值是一個 tensors 的 tuple,順序如下:["loss_actor", "loss_qvalue", "loss_alpha", "alpha", "entropy", "state_action_value_actor", "action_log_prob_actor", "next.state_value", "target_value",]
。範例
>>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.redq import REDQLoss >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor()) >>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["loc", "scale"], ... spec=spec, ... distribution_class=TanhNormal) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> qvalue = ValueOperator( ... module=module, ... in_keys=['observation', 'action']) >>> loss = REDQLoss(actor, qvalue) >>> batch = [2, ] >>> action = spec.rand(batch) >>> # filter output keys to "loss_actor", and "loss_qvalue" >>> _ = loss.select_out_keys("loss_actor", "loss_qvalue") >>> loss_actor, loss_qvalue = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_reward=torch.randn(*batch, 1), ... next_observation=torch.randn(*batch, n_obs)) >>> loss_actor.backward()
- forward(tensordict: TensorDictBase = None) TensorDictBase [source]¶
它旨在讀取一個輸入 TensorDict 並傳回另一個帶有 "loss*" 命名的損失鍵的 tensordict。
將損失拆分為其組成部分然後可以由訓練器使用,以記錄整個訓練過程中的各種損失值。輸出 tensordict 中存在的其他 scalar 也會被記錄。
- 參數:
tensordict – 一個輸入 tensordict,其中包含計算損失所需的值。
- 傳回:
一個新的沒有批次維度的 tensordict,其中包含各種將被命名為 "loss*" 的損失 scalar。必須使用此名稱傳回損失,因為訓練器會在反向傳播之前讀取它們。
- make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[source]¶
Value-function 建構子。
如果想要非預設值函式,則必須使用此方法建立它。
- 參數:
value_type (ValueEstimators) – 一個
ValueEstimators
enum 類型,指示要使用的值函式。如果未提供,將使用儲存在default_value_estimator
屬性中的預設值。產生的值估算器類別將註冊在self.value_type
中,以便將來進行改進。**hyperparams – 用於值函式的 hyperparameter。如果未提供,將使用
default_value_kwargs()
指示的值。
範例
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> # updating the parameters of the default value estimator >>> dqn_loss.make_value_estimator(gamma=0.9) >>> dqn_loss.make_value_estimator( ... ValueEstimators.TD1, ... gamma=0.9) >>> # if we want to change the gamma value >>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)