BaseDatasetExperienceReplay¶
- class torchrl.data.datasets.BaseDatasetExperienceReplay(*, priority_key: str = 'td_error', **kwargs)[原始碼]¶
離線資料集的父類別。
- add(data: TensorDictBase) int ¶
將單個元素新增至重播緩衝區。
- 參數:
data (Any) – 要新增至重播緩衝區的資料
- 傳回:
資料在重播緩衝區中的索引。
- append_transform(transform: Transform, *, invert: bool = False) ReplayBuffer ¶
在最後附加轉換。
當呼叫 sample 時,轉換會依序套用。
- 參數:
transform (Transform) – 要附加的轉換
- 關鍵字參數:
invert (bool, optional) – 如果
True
,則轉換將會反轉(正向呼叫將在寫入期間呼叫,反向呼叫將在讀取期間呼叫)。預設為False
。
範例
>>> rb = ReplayBuffer(storage=LazyMemmapStorage(10), batch_size=4) >>> data = TensorDict({"a": torch.zeros(10)}, [10]) >>> def t(data): ... data += 1 ... return data >>> rb.append_transform(t, invert=True) >>> rb.extend(data) >>> assert (data == 1).all()
- abstract property data_path: Path¶
資料集的路徑,包括分割。
- abstract property data_path_root: Path¶
資料集根目錄的路徑。
- dumps(path)¶
將重播緩衝區儲存到指定路徑的磁碟上。
- 參數:
path (Path 或 str) – 儲存重播緩衝區的路徑。
範例
>>> import tempfile >>> import tqdm >>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer >>> from torchrl.data.replay_buffers.samplers import PrioritizedSampler, RandomSampler >>> import torch >>> from tensordict import TensorDict >>> # Build and populate the replay buffer >>> S = 1_000_000 >>> sampler = PrioritizedSampler(S, 1.1, 1.0) >>> # sampler = RandomSampler() >>> storage = LazyMemmapStorage(S) >>> rb = TensorDictReplayBuffer(storage=storage, sampler=sampler) >>> >>> for _ in tqdm.tqdm(range(100)): ... td = TensorDict({"obs": torch.randn(100, 3, 4), "next": {"obs": torch.randn(100, 3, 4)}, "td_error": torch.rand(100)}, [100]) ... rb.extend(td) ... sample = rb.sample(32) ... rb.update_tensordict_priority(sample) >>> # save and load the buffer >>> with tempfile.TemporaryDirectory() as tmpdir: ... rb.dumps(tmpdir) ... ... sampler = PrioritizedSampler(S, 1.1, 1.0) ... # sampler = RandomSampler() ... storage = LazyMemmapStorage(S) ... rb_load = TensorDictReplayBuffer(storage=storage, sampler=sampler) ... rb_load.loads(tmpdir) ... assert len(rb) == len(rb_load)
- empty()¶
清空重播緩衝區,並將游標重置為 0。
- extend(tensordicts: TensorDictBase) Tensor ¶
使用可迭代物件中包含的一個或多個元素來擴展重播緩衝區。
如果存在,將會呼叫反向轉換。`
- 參數:
data (iterable) – 要添加到重播緩衝區的資料集合。
- 傳回:
添加到重播緩衝區的資料索引。
警告
extend()
在處理數值列表時可能具有不明確的簽章,這些列表應被解釋為 PyTree(在這種情況下,列表中的所有元素都將放在儲存在儲存中的 PyTree 的切片中)或一次添加一個值的數值列表。為了解决這個問題,TorchRL 清楚地區分了列表和元組:元組將被視為 PyTree,列表(在根層級)將被解釋為一次一個地添加到緩衝區的數值堆疊。對於ListStorage
實例,只能提供未綁定的元素(沒有 PyTrees)。
- insert_transform(index: int, transform: Transform, *, invert: bool = False) ReplayBuffer ¶
插入轉換。
呼叫 sample 時,會依序執行轉換。
- 參數:
index (int) – 插入轉換的位置。
transform (Transform) – 要附加的轉換
- 關鍵字參數:
invert (bool, optional) – 如果
True
,則轉換將會反轉(正向呼叫將在寫入期間呼叫,反向呼叫將在讀取期間呼叫)。預設為False
。
- loads(path)¶
在指定路徑載入重播緩衝區狀態。
緩衝區應具有匹配的元件,並使用
dumps()
儲存。- 參數:
path (Path 或 str) – 儲存重播緩衝區的路徑。
請參閱
dumps()
以取得更多資訊。
- preprocess(fn: Callable[[TensorDictBase], TensorDictBase], dim: int = 0, num_workers: int | None = None, *, chunksize: int | None = None, num_chunks: int | None = None, pool: mp.Pool | None = None, generator: torch.Generator | None = None, max_tasks_per_child: int | None = None, worker_threads: int = 1, index_with_generator: bool = False, pbar: bool = False, mp_start_method: str | None = None, num_frames: int | None = None, dest: str | Path) TensorStorage [source]¶
預處理資料集並回傳一個具有格式化資料的新儲存空間。
資料轉換必須是單元的 (作用於資料集的單一範例)。
Args 和 Keyword Args 會轉發到
map()
。資料集隨後可以使用
delete()
刪除。- 關鍵字參數:
dest (路徑 或 等效路徑) – 新資料集位置的路徑。
num_frames (int, 選用) – 如果提供,則只會轉換前 num_frames 個影格。 這對於在一開始除錯轉換很有用。
回傳: 一個新的儲存空間,用於
ReplayBuffer
實例中。範例
>>> from torchrl.data.datasets import MinariExperienceReplay >>> >>> data = MinariExperienceReplay( ... list(MinariExperienceReplay.available_datasets)[0], ... batch_size=32 ... ) >>> print(data) MinariExperienceReplay( storages=TensorStorage(TensorDict( fields={ action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True), episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True), info: TensorDict( fields={ distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True), qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True), reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True), x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), next: TensorDict( fields={ done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), info: TensorDict( fields={ distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True), qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True), reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True), x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), observation: TensorDict( fields={ achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True), terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), observation: TensorDict( fields={ achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)), samplers=RandomSampler, writers=ImmutableDatasetWriter(), batch_size=32, transform=Compose( ), collate_fn=<function _collate_id at 0x120e21dc0>) >>> from torchrl.envs import CatTensors, Compose >>> from tempfile import TemporaryDirectory >>> >>> cat_tensors = CatTensors( ... in_keys=[("observation", "observation"), ("observation", "achieved_goal"), ... ("observation", "desired_goal")], ... out_key="obs" ... ) >>> cat_next_tensors = CatTensors( ... in_keys=[("next", "observation", "observation"), ... ("next", "observation", "achieved_goal"), ... ("next", "observation", "desired_goal")], ... out_key=("next", "obs") ... ) >>> t = Compose(cat_tensors, cat_next_tensors) >>> >>> def func(td): ... td = td.select( ... "action", ... "episode", ... ("next", "done"), ... ("next", "observation"), ... ("next", "reward"), ... ("next", "terminated"), ... ("next", "truncated"), ... "observation" ... ) ... td = t(td) ... return td >>> with TemporaryDirectory() as tmpdir: ... new_storage = data.preprocess(func, num_workers=4, pbar=True, mp_start_method="fork", dest=tmpdir) ... rb = ReplayBuffer(storage=new_storage) ... print(rb) ReplayBuffer( storage=TensorStorage( data=TensorDict( fields={ action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True), episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True), next: TensorDict( fields={ done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True), observation: TensorDict( fields={ }, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True), terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True), observation: TensorDict( fields={ }, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), shape=torch.Size([1000000]), len=1000000, max_size=1000000), sampler=RandomSampler(), writer=RoundRobinWriter(cursor=0, full_storage=True), batch_size=None, collate_fn=<function _collate_id at 0x168406fc0>)
- register_load_hook(hook: Callable[[Any], Any])¶
為儲存空間註冊一個載入鉤子。
注意
在儲存回放緩衝區時,目前不會序列化鉤子:每次建立緩衝區時都必須手動重新初始化它們。
- register_save_hook(hook: Callable[[Any], Any])¶
為儲存空間註冊一個儲存鉤子。
注意
在儲存回放緩衝區時,目前不會序列化鉤子:每次建立緩衝區時都必須手動重新初始化它們。
- sample(batch_size: Optional[int] = None, return_info: bool = False, include_info: Optional[bool] = None) TensorDictBase ¶
從回放緩衝區採樣一批資料。
使用 Sampler 採樣索引,並從 Storage 中檢索它們。
- 參數:
batch_size (int, optional) – 要收集的資料大小。如果未提供,此方法將按照 sampler 指示的方式採樣一個 batch-size。
return_info (bool) – 是否回傳 info。如果為 True,則結果為一個 tuple (data, info)。如果為 False,則結果為 data。
- 傳回:
一個 tensordict,包含在回放緩衝區中選取的一批資料。 如果 return_info 標誌設定為 True,則為包含此 tensordict 和 info 的 tuple。
- set_storage(storage: Storage, collate_fn: Optional[Callable] = None)¶
在回放緩衝區中設定一個新的 storage,並回傳先前的 storage。
- 參數:
storage (Storage) – 緩衝區的新 storage。
collate_fn (callable, optional) – 如果提供,collate_fn 將設定為此值。 否則,它會重置為預設值。
- property write_count¶
透過 add 和 extend 到目前為止在緩衝區中寫入的項目總數。