捷徑

BaseDatasetExperienceReplay

class torchrl.data.datasets.BaseDatasetExperienceReplay(*, priority_key: str = 'td_error', **kwargs)[原始碼]

離線資料集的父類別。

add(data: TensorDictBase) int

將單個元素新增至重播緩衝區。

參數:

data (Any) – 要新增至重播緩衝區的資料

傳回:

資料在重播緩衝區中的索引。

append_transform(transform: Transform, *, invert: bool = False) ReplayBuffer

在最後附加轉換。

當呼叫 sample 時,轉換會依序套用。

參數:

transform (Transform) – 要附加的轉換

關鍵字參數:

invert (bool, optional) – 如果 True,則轉換將會反轉(正向呼叫將在寫入期間呼叫,反向呼叫將在讀取期間呼叫)。預設為 False

範例

>>> rb = ReplayBuffer(storage=LazyMemmapStorage(10), batch_size=4)
>>> data = TensorDict({"a": torch.zeros(10)}, [10])
>>> def t(data):
...     data += 1
...     return data
>>> rb.append_transform(t, invert=True)
>>> rb.extend(data)
>>> assert (data == 1).all()
abstract property data_path: Path

資料集的路徑,包括分割。

abstract property data_path_root: Path

資料集根目錄的路徑。

delete()[原始碼]

從磁碟刪除資料集儲存。

dump(*args, **kwargs)

dumps() 的別名。

dumps(path)

將重播緩衝區儲存到指定路徑的磁碟上。

參數:

path (Pathstr) – 儲存重播緩衝區的路徑。

範例

>>> import tempfile
>>> import tqdm
>>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer
>>> from torchrl.data.replay_buffers.samplers import PrioritizedSampler, RandomSampler
>>> import torch
>>> from tensordict import TensorDict
>>> # Build and populate the replay buffer
>>> S = 1_000_000
>>> sampler = PrioritizedSampler(S, 1.1, 1.0)
>>> # sampler = RandomSampler()
>>> storage = LazyMemmapStorage(S)
>>> rb = TensorDictReplayBuffer(storage=storage, sampler=sampler)
>>>
>>> for _ in tqdm.tqdm(range(100)):
...     td = TensorDict({"obs": torch.randn(100, 3, 4), "next": {"obs": torch.randn(100, 3, 4)}, "td_error": torch.rand(100)}, [100])
...     rb.extend(td)
...     sample = rb.sample(32)
...     rb.update_tensordict_priority(sample)
>>> # save and load the buffer
>>> with tempfile.TemporaryDirectory() as tmpdir:
...     rb.dumps(tmpdir)
...
...     sampler = PrioritizedSampler(S, 1.1, 1.0)
...     # sampler = RandomSampler()
...     storage = LazyMemmapStorage(S)
...     rb_load = TensorDictReplayBuffer(storage=storage, sampler=sampler)
...     rb_load.loads(tmpdir)
...     assert len(rb) == len(rb_load)
empty()

清空重播緩衝區,並將游標重置為 0。

extend(tensordicts: TensorDictBase) Tensor

使用可迭代物件中包含的一個或多個元素來擴展重播緩衝區。

如果存在,將會呼叫反向轉換。`

參數:

data (iterable) – 要添加到重播緩衝區的資料集合。

傳回:

添加到重播緩衝區的資料索引。

警告

extend() 在處理數值列表時可能具有不明確的簽章,這些列表應被解釋為 PyTree(在這種情況下,列表中的所有元素都將放在儲存在儲存中的 PyTree 的切片中)或一次添加一個值的數值列表。為了解决這個問題,TorchRL 清楚地區分了列表和元組:元組將被視為 PyTree,列表(在根層級)將被解釋為一次一個地添加到緩衝區的數值堆疊。對於 ListStorage 實例,只能提供未綁定的元素(沒有 PyTrees)。

insert_transform(index: int, transform: Transform, *, invert: bool = False) ReplayBuffer

插入轉換。

呼叫 sample 時,會依序執行轉換。

參數:
  • index (int) – 插入轉換的位置。

  • transform (Transform) – 要附加的轉換

關鍵字參數:

invert (bool, optional) – 如果 True,則轉換將會反轉(正向呼叫將在寫入期間呼叫,反向呼叫將在讀取期間呼叫)。預設為 False

load(*args, **kwargs)

loads() 的別名。

loads(path)

在指定路徑載入重播緩衝區狀態。

緩衝區應具有匹配的元件,並使用 dumps() 儲存。

參數:

path (Pathstr) – 儲存重播緩衝區的路徑。

請參閱 dumps() 以取得更多資訊。

preprocess(fn: Callable[[TensorDictBase], TensorDictBase], dim: int = 0, num_workers: int | None = None, *, chunksize: int | None = None, num_chunks: int | None = None, pool: mp.Pool | None = None, generator: torch.Generator | None = None, max_tasks_per_child: int | None = None, worker_threads: int = 1, index_with_generator: bool = False, pbar: bool = False, mp_start_method: str | None = None, num_frames: int | None = None, dest: str | Path) TensorStorage[source]

預處理資料集並回傳一個具有格式化資料的新儲存空間。

資料轉換必須是單元的 (作用於資料集的單一範例)。

Args 和 Keyword Args 會轉發到 map()

資料集隨後可以使用 delete() 刪除。

關鍵字參數:
  • dest (路徑等效路徑) – 新資料集位置的路徑。

  • num_frames (int, 選用) – 如果提供,則只會轉換前 num_frames 個影格。 這對於在一開始除錯轉換很有用。

回傳: 一個新的儲存空間,用於 ReplayBuffer 實例中。

範例

>>> from torchrl.data.datasets import MinariExperienceReplay
>>>
>>> data = MinariExperienceReplay(
...     list(MinariExperienceReplay.available_datasets)[0],
...     batch_size=32
...     )
>>> print(data)
MinariExperienceReplay(
    storages=TensorStorage(TensorDict(
        fields={
            action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True),
            episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True),
            info: TensorDict(
                fields={
                    distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True),
                    qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True),
                    x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False),
            next: TensorDict(
                fields={
                    done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                    info: TensorDict(
                        fields={
                            distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True),
                            qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True),
                            x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)},
                        batch_size=torch.Size([1000000]),
                        device=cpu,
                        is_shared=False),
                    observation: TensorDict(
                        fields={
                            achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)},
                        batch_size=torch.Size([1000000]),
                        device=cpu,
                        is_shared=False),
                    reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True),
                    terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                    truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False),
            observation: TensorDict(
                fields={
                    achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False)},
        batch_size=torch.Size([1000000]),
        device=cpu,
        is_shared=False)),
    samplers=RandomSampler,
    writers=ImmutableDatasetWriter(),
batch_size=32,
transform=Compose(
),
collate_fn=<function _collate_id at 0x120e21dc0>)
>>> from torchrl.envs import CatTensors, Compose
>>> from tempfile import TemporaryDirectory
>>>
>>> cat_tensors = CatTensors(
...     in_keys=[("observation", "observation"), ("observation", "achieved_goal"),
...              ("observation", "desired_goal")],
...     out_key="obs"
...     )
>>> cat_next_tensors = CatTensors(
...     in_keys=[("next", "observation", "observation"),
...              ("next", "observation", "achieved_goal"),
...              ("next", "observation", "desired_goal")],
...     out_key=("next", "obs")
...     )
>>> t = Compose(cat_tensors, cat_next_tensors)
>>>
>>> def func(td):
...     td = td.select(
...         "action",
...         "episode",
...         ("next", "done"),
...         ("next", "observation"),
...         ("next", "reward"),
...         ("next", "terminated"),
...         ("next", "truncated"),
...         "observation"
...         )
...     td = t(td)
...     return td
>>> with TemporaryDirectory() as tmpdir:
...     new_storage = data.preprocess(func, num_workers=4, pbar=True, mp_start_method="fork", dest=tmpdir)
...     rb = ReplayBuffer(storage=new_storage)
...     print(rb)
ReplayBuffer(
    storage=TensorStorage(
        data=TensorDict(
            fields={
                action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True),
                episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True),
                next: TensorDict(
                    fields={
                        done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                        obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True),
                        observation: TensorDict(
                            fields={
                            },
                            batch_size=torch.Size([1000000]),
                            device=cpu,
                            is_shared=False),
                        reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True),
                        terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                        truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)},
                    batch_size=torch.Size([1000000]),
                    device=cpu,
                    is_shared=False),
                obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True),
                observation: TensorDict(
                    fields={
                    },
                    batch_size=torch.Size([1000000]),
                    device=cpu,
                    is_shared=False)},
            batch_size=torch.Size([1000000]),
            device=cpu,
            is_shared=False),
        shape=torch.Size([1000000]),
        len=1000000,
        max_size=1000000),
    sampler=RandomSampler(),
    writer=RoundRobinWriter(cursor=0, full_storage=True),
    batch_size=None,
    collate_fn=<function _collate_id at 0x168406fc0>)
register_load_hook(hook: Callable[[Any], Any])

為儲存空間註冊一個載入鉤子。

注意

在儲存回放緩衝區時,目前不會序列化鉤子:每次建立緩衝區時都必須手動重新初始化它們。

register_save_hook(hook: Callable[[Any], Any])

為儲存空間註冊一個儲存鉤子。

注意

在儲存回放緩衝區時,目前不會序列化鉤子:每次建立緩衝區時都必須手動重新初始化它們。

sample(batch_size: Optional[int] = None, return_info: bool = False, include_info: Optional[bool] = None) TensorDictBase

從回放緩衝區採樣一批資料。

使用 Sampler 採樣索引,並從 Storage 中檢索它們。

參數:
  • batch_size (int, optional) – 要收集的資料大小。如果未提供,此方法將按照 sampler 指示的方式採樣一個 batch-size。

  • return_info (bool) – 是否回傳 info。如果為 True,則結果為一個 tuple (data, info)。如果為 False,則結果為 data。

傳回:

一個 tensordict,包含在回放緩衝區中選取的一批資料。 如果 return_info 標誌設定為 True,則為包含此 tensordict 和 info 的 tuple。

property sampler

回放緩衝區的 sampler。

Sampler 必須是 Sampler 的一個實例。

save(*args, **kwargs)

dumps() 的別名。

set_sampler(sampler: Sampler)

在回放緩衝區中設定一個新的 sampler,並回傳先前的 sampler。

set_storage(storage: Storage, collate_fn: Optional[Callable] = None)

在回放緩衝區中設定一個新的 storage,並回傳先前的 storage。

參數:
  • storage (Storage) – 緩衝區的新 storage。

  • collate_fn (callable, optional) – 如果提供,collate_fn 將設定為此值。 否則,它會重置為預設值。

set_writer(writer: Writer)

在回放緩衝區中設定一個新的 writer,並回傳先前的 writer。

property storage

回放緩衝區的 storage。

Storage 必須是 Storage 的一個實例。

property write_count

透過 add 和 extend 到目前為止在緩衝區中寫入的項目總數。

property writer

回放緩衝區的 writer。

Writer 必須是 Writer 的一個實例。

文件

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources