捷徑

GenDGRLExperienceReplay

class torchrl.data.datasets.GenDGRLExperienceReplay(dataset_id: str, batch_size: Optional[int] = None, *, download: bool = True, root: Optional[str] = None, **kwargs)[source]

Gen-DGRL 經驗回放資料集。

此資料集隨附論文「離線強化學習中的泛化差距」。

Arxiv: https://arxiv.org/abs/2312.05742

GitHub: https://github.com/facebookresearch/gen_dgrl

資料格式遵循 TED 慣例

此類別讓您可以存取 ProcGen 資料集。在 GenDGRLExperienceReplay.available_datasets 中註冊的每個 dataset_id 都包含一個特定任務(“bigfish”“bossfight”、...)和一個類別(“1M_E”“1M_S”、...),並以逗號分隔(“bigfish-1M_E”、...)。

在下載和準備期間,資料會下載為 .tar 檔案,其中每個軌跡都獨立儲存在 .npy 檔案中。這些檔案會被解壓縮,寫入連續的 mmap 張量,然後清除。每個資料集的這個過程可能需要幾分鐘。在叢集上,建議先在不同的 worker 或程序上分別執行下載和預處理,以處理不同的資料集,然後在第二個時間啟動訓練腳本。

參數:
  • dataset_id (str) – 要下載的資料集。必須是 GenDGRLExperienceReplay.available_datasets 的一部分。

  • batch_size (int, optional) – 採樣期間使用的批次大小。如有必要,可以被 data.sample(batch_size) 覆蓋。

關鍵字參數:
  • root (Pathstr, optional) – GenDGRLExperienceReplay 資料集根目錄。實際的資料集記憶體對應檔案將儲存在 <root>/<dataset_id> 下。如果未提供,則預設為 ``~/.cache/torchrl/gen_dgrl`。

  • download (boolstr, 選填) – 如果找不到資料集,是否應下載。預設為 True。Download 也可以傳遞為 "force",在這種情況下,下載的資料將被覆寫。

  • sampler (Sampler, 選填) – 要使用的取樣器。如果未提供,將使用預設的 RandomSampler()。

  • writer (Writer, 選填) – 要使用的寫入器。如果未提供,將使用預設的 RoundRobinWriter()。

  • collate_fn (callable, 選填) – 合併樣本列表以形成 Tensor(s)/輸出的 mini-batch。從 map-style 資料集使用批次載入時使用。

  • pin_memory (bool) – 是否應在 rb 樣本上呼叫 pin_memory()。

  • prefetch (int, 選填) – 使用多執行緒預先提取的下一個批次數量。

  • transform (Transform, 選填) – 呼叫 sample() 時要執行的轉換。要串聯轉換,請使用 Compose 類別。

變數:

available_datasets – 要下載的可接受條目的列表。這些名稱對應於 huggingface 資料集儲存庫中的目錄路徑。如果可能,該列表將從 huggingface 動態檢索。如果沒有網路連線,將使用快取版本。

範例

>>> import torch
>>> torch.manual_seed(0)
>>> from torchrl.data.datasets import GenDGRLExperienceReplay
>>> d = GenDGRLExperienceReplay("bigfish-1M_E", batch_size=32)
>>> for batch in d:
...     break
>>> print(batch)
add(data: TensorDictBase) int

向 replay buffer 新增單個元素。

參數:

data (Any) – 要新增到 replay buffer 的資料

回傳:

資料在 replay buffer 中的索引。

append_transform(transform: Transform, *, invert: bool = False) ReplayBuffer

在結尾附加轉換。

呼叫 sample 時,轉換會按順序套用。

參數:

transform (Transform) – 要附加的轉換

關鍵字參數:

invert (bool, 選填) – 如果為 True,則轉換將被反轉(正向呼叫將在寫入期間呼叫,而反向呼叫將在讀取期間呼叫)。預設為 False

範例

>>> rb = ReplayBuffer(storage=LazyMemmapStorage(10), batch_size=4)
>>> data = TensorDict({"a": torch.zeros(10)}, [10])
>>> def t(data):
...     data += 1
...     return data
>>> rb.append_transform(t, invert=True)
>>> rb.extend(data)
>>> assert (data == 1).all()
property data_path

資料集的路徑,包括分割。

property data_path_root

資料集根目錄的路徑。

delete()

從磁碟刪除資料集儲存。

dump(*args, **kwargs)

dumps() 的別名。

dumps(path)

將 replay buffer 儲存到磁碟上的指定路徑。

參數:

path (Pathstr) – 要儲存 replay buffer 的路徑。

範例

>>> import tempfile
>>> import tqdm
>>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer
>>> from torchrl.data.replay_buffers.samplers import PrioritizedSampler, RandomSampler
>>> import torch
>>> from tensordict import TensorDict
>>> # Build and populate the replay buffer
>>> S = 1_000_000
>>> sampler = PrioritizedSampler(S, 1.1, 1.0)
>>> # sampler = RandomSampler()
>>> storage = LazyMemmapStorage(S)
>>> rb = TensorDictReplayBuffer(storage=storage, sampler=sampler)
>>>
>>> for _ in tqdm.tqdm(range(100)):
...     td = TensorDict({"obs": torch.randn(100, 3, 4), "next": {"obs": torch.randn(100, 3, 4)}, "td_error": torch.rand(100)}, [100])
...     rb.extend(td)
...     sample = rb.sample(32)
...     rb.update_tensordict_priority(sample)
>>> # save and load the buffer
>>> with tempfile.TemporaryDirectory() as tmpdir:
...     rb.dumps(tmpdir)
...
...     sampler = PrioritizedSampler(S, 1.1, 1.0)
...     # sampler = RandomSampler()
...     storage = LazyMemmapStorage(S)
...     rb_load = TensorDictReplayBuffer(storage=storage, sampler=sampler)
...     rb_load.loads(tmpdir)
...     assert len(rb) == len(rb_load)
empty()

清空 replay buffer 並將游標重設為 0。

extend(tensordicts: TensorDictBase) Tensor

使用一個或多個包含在可迭代物件中的元素擴充 replay buffer。

如果存在,將呼叫反向轉換。`

參數:

data (iterable) – 要新增到 replay buffer 的資料集合。

回傳:

新增到 replay buffer 的資料索引。

警告

extend() 在處理數值列表時,可能會有不明確的簽章,這應該被解讀為 PyTree(在這種情況下,列表中的所有元素都會被放入儲存的 PyTree 中的一個切片)或是一個數值列表,以便一次新增一個數值。為了解決這個問題,TorchRL 清楚地區分了 list 和 tuple:tuple 會被視為 PyTree,而 list (在根層級) 會被解讀為一個數值堆疊,以便一次新增一個數值到緩衝區。對於 ListStorage 實例,只能提供未綁定的元素(沒有 PyTrees)。

insert_transform(index: int, transform: Transform, *, invert: bool = False) ReplayBuffer

插入 transform。

當呼叫 sample 時,Transforms 會依序執行。

參數:
  • index (int) – 插入 transform 的位置。

  • transform (Transform) – 要附加的轉換

關鍵字參數:

invert (bool, 選填) – 如果為 True,則轉換將被反轉(正向呼叫將在寫入期間呼叫,而反向呼叫將在讀取期間呼叫)。預設為 False

load(*args, **kwargs)

loads() 的別名。

loads(path)

在給定的路徑載入 replay buffer 狀態。

緩衝區應該有匹配的元件,並且使用 dumps() 儲存。

參數:

path (Pathstr) – replay buffer 儲存的路徑。

參閱 dumps() 取得更多資訊。

preprocess(fn: Callable[[TensorDictBase], TensorDictBase], dim: int = 0, num_workers: int | None = None, *, chunksize: int | None = None, num_chunks: int | None = None, pool: mp.Pool | None = None, generator: torch.Generator | None = None, max_tasks_per_child: int | None = None, worker_threads: int = 1, index_with_generator: bool = False, pbar: bool = False, mp_start_method: str | None = None, num_frames: int | None = None, dest: str | Path) TensorStorage

預處理資料集並傳回具有格式化資料的新儲存空間。

資料轉換必須是單一的(對資料集的單個樣本進行處理)。

Args 和 Keyword Args 會轉發到 map()

之後可以使用 delete() 刪除資料集。

關鍵字參數:
  • dest (pathequivalent) – 新資料集位置的路徑。

  • num_frames (int, optional) – 如果提供,則只會轉換前 num_frames 個影格。 這對於首先偵錯轉換很有用。

Returns: 要在 ReplayBuffer 實例中使用的新儲存空間。

範例

>>> from torchrl.data.datasets import MinariExperienceReplay
>>>
>>> data = MinariExperienceReplay(
...     list(MinariExperienceReplay.available_datasets)[0],
...     batch_size=32
...     )
>>> print(data)
MinariExperienceReplay(
    storages=TensorStorage(TensorDict(
        fields={
            action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True),
            episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True),
            info: TensorDict(
                fields={
                    distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True),
                    qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True),
                    x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                    y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False),
            next: TensorDict(
                fields={
                    done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                    info: TensorDict(
                        fields={
                            distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True),
                            qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True),
                            x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True),
                            y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)},
                        batch_size=torch.Size([1000000]),
                        device=cpu,
                        is_shared=False),
                    observation: TensorDict(
                        fields={
                            achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                            observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)},
                        batch_size=torch.Size([1000000]),
                        device=cpu,
                        is_shared=False),
                    reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True),
                    terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                    truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False),
            observation: TensorDict(
                fields={
                    achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True),
                    observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)},
                batch_size=torch.Size([1000000]),
                device=cpu,
                is_shared=False)},
        batch_size=torch.Size([1000000]),
        device=cpu,
        is_shared=False)),
    samplers=RandomSampler,
    writers=ImmutableDatasetWriter(),
batch_size=32,
transform=Compose(
),
collate_fn=<function _collate_id at 0x120e21dc0>)
>>> from torchrl.envs import CatTensors, Compose
>>> from tempfile import TemporaryDirectory
>>>
>>> cat_tensors = CatTensors(
...     in_keys=[("observation", "observation"), ("observation", "achieved_goal"),
...              ("observation", "desired_goal")],
...     out_key="obs"
...     )
>>> cat_next_tensors = CatTensors(
...     in_keys=[("next", "observation", "observation"),
...              ("next", "observation", "achieved_goal"),
...              ("next", "observation", "desired_goal")],
...     out_key=("next", "obs")
...     )
>>> t = Compose(cat_tensors, cat_next_tensors)
>>>
>>> def func(td):
...     td = td.select(
...         "action",
...         "episode",
...         ("next", "done"),
...         ("next", "observation"),
...         ("next", "reward"),
...         ("next", "terminated"),
...         ("next", "truncated"),
...         "observation"
...         )
...     td = t(td)
...     return td
>>> with TemporaryDirectory() as tmpdir:
...     new_storage = data.preprocess(func, num_workers=4, pbar=True, mp_start_method="fork", dest=tmpdir)
...     rb = ReplayBuffer(storage=new_storage)
...     print(rb)
ReplayBuffer(
    storage=TensorStorage(
        data=TensorDict(
            fields={
                action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True),
                episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True),
                next: TensorDict(
                    fields={
                        done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                        obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True),
                        observation: TensorDict(
                            fields={
                            },
                            batch_size=torch.Size([1000000]),
                            device=cpu,
                            is_shared=False),
                        reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True),
                        terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True),
                        truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)},
                    batch_size=torch.Size([1000000]),
                    device=cpu,
                    is_shared=False),
                obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True),
                observation: TensorDict(
                    fields={
                    },
                    batch_size=torch.Size([1000000]),
                    device=cpu,
                    is_shared=False)},
            batch_size=torch.Size([1000000]),
            device=cpu,
            is_shared=False),
        shape=torch.Size([1000000]),
        len=1000000,
        max_size=1000000),
    sampler=RandomSampler(),
    writer=RoundRobinWriter(cursor=0, full_storage=True),
    batch_size=None,
    collate_fn=<function _collate_id at 0x168406fc0>)
register_load_hook(hook: Callable[[Any], Any])

為儲存空間註冊載入 hook。

Note

在儲存重播緩衝區時,目前不會序列化 Hook:每次建立緩衝區時都必須手動重新初始化它們。

register_save_hook(hook: Callable[[Any], Any])

為儲存空間註冊一個儲存 hook。

Note

在儲存重播緩衝區時,目前不會序列化 Hook:每次建立緩衝區時都必須手動重新初始化它們。

sample(batch_size: Optional[int] = None, return_info: bool = False, include_info: Optional[bool] = None) TensorDictBase

從回放緩衝區取樣一個批次的資料。

使用 Sampler 取樣索引,並從 Storage 中檢索它們。

參數:
  • batch_size (int, optional) – 要收集的資料大小。 如果沒有提供,這個方法將取樣一個由 sampler 指示的 batch_size。

  • return_info (bool) – 是否要回傳資訊。如果為 True,結果會是一個 tuple (資料, 資訊)。如果為 False,結果是資料。

回傳:

一個包含在回放緩衝區中選取的一批資料的 tensordict。如果 return_info 標記設定為 True,則包含這個 tensordict 和資訊的 tuple。

property sampler

回放緩衝區的取樣器。

取樣器必須是 Sampler 的一個實例。

save(*args, **kwargs)

dumps() 的別名。

set_sampler(sampler: Sampler)

在回放緩衝區中設定一個新的取樣器,並回傳之前的取樣器。

set_storage(storage: Storage, collate_fn: Optional[Callable] = None)

在回放緩衝區中設定一個新的儲存空間,並回傳之前的儲存空間。

參數:
  • storage (Storage) – 緩衝區的新儲存空間。

  • collate_fn (callable, optional) – 如果有提供,collate_fn 會設定為這個值。否則,它會重設為預設值。

set_writer(writer: Writer)

在回放緩衝區中設定一個新的寫入器,並回傳之前的寫入器。

property storage

回放緩衝區的儲存空間。

儲存空間必須是 Storage 的一個實例。

property write_count

透過 add 和 extend,目前在緩衝區中寫入的項目總數。

property writer

回放緩衝區的寫入器。

寫入器必須是 Writer 的一個實例。

文件

存取 PyTorch 的完整開發者文件

檢視文件

教學

取得為初學者和進階開發者提供的深入教學

檢視教學

資源

尋找開發資源並取得您問題的解答

檢視資源