DiscreteIQLLoss¶
- class torchrl.objectives.DiscreteIQLLoss(*args, **kwargs)[原始碼]¶
離散 IQL 損失的 TorchRL 實作。
發表於「具有隱式 Q-Learning 的離線強化學習」https://arxiv.org/abs/2110.06169
- 參數:
actor_network (ProbabilisticActor) – 隨機 actor
qvalue_network (TensorDictModule) – Q(s, a) 參數模型。
value_network (TensorDictModule, 選用) – V(s) 參數模型。
- 關鍵字引數:
action_space (str 或 TensorSpec) – 動作空間。必須是
"one-hot"
、"mult_one_hot"
、"binary"
或"categorical"
之一,或是對應規範的實例 (torchrl.data.OneHot
、torchrl.data.MultiOneHot
、torchrl.data.Binary
或torchrl.data.Categorical
)。num_qvalue_nets (integer, 選用) – 使用的 Q 值網路數量。預設值為
2
。loss_function (str, 選用) – 要與值函數損失一起使用的損失函數。預設值為“smooth_l1”。
temperature ( float, optional) – 反向溫度(beta)。對於較小的超參數值,目標函數的行為類似於行為克隆,而對於較大的值,它試圖恢復 Q 函數的最大值。
expectile ( float, optional) – expectile \(\tau\)。 較大的 \(\tau\) 值對於需要動態規劃(“stichting”)的 antmaze 任務至關重要。
priority_key (str, optional) – [已棄用,請改用 .set_keys(priority_key=priority_key)] tensordict 鍵,用於寫入優先權(用於優先權重播緩衝區)。預設值為 “td_error”。
separate_losses (bool, optional) – 如果
True
,則 policy 和 critic 之間共享的參數僅會在 policy 損失上進行訓練。預設值為False
,即梯度會傳播到 policy 和 critic 損失的共享參數。reduction (str, optional) – 指定要應用於輸出的歸約方式:
"none"
|"mean"
|"sum"
。"none"
: 不應用歸約,"mean"
: 輸出之總和將除以輸出中的元素數量,"sum"
: 輸出將被加總。預設值:"mean"
。
範例
>>> import torch >>> from torch import nn >>> from torchrl.data.tensor_specs import OneHot >>> from torchrl.modules.distributions.discrete import OneHotCategorical >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.iql import DiscreteIQLLoss >>> from tensordict import TensorDict >>> n_act, n_obs = 4, 3 >>> spec = OneHot(n_act) >>> module = SafeModule(nn.Linear(n_obs, n_act), in_keys=["observation"], out_keys=["logits"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["logits"], ... out_keys=["action"], ... spec=spec, ... distribution_class=OneHotCategorical) >>> qvalue = SafeModule( ... nn.Linear(n_obs, n_act), ... in_keys=["observation"], ... out_keys=["state_action_value"], ... ) >>> value = SafeModule( ... nn.Linear(n_obs, 1), ... in_keys=["observation"], ... out_keys=["state_value"], ... ) >>> loss = DiscreteIQLLoss(actor, qvalue, value) >>> batch = [2, ] >>> action = spec.rand(batch).long() >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": action, ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1), ... ("next", "observation"): torch.randn(*batch, n_obs), ... }, batch) >>> loss(data) TensorDict( fields={ entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此類別也與非 tensordict 型模組相容,並且可以在不使用任何與 tensordict 相關的原始元素的情況下使用。在這種情況下,預期的關鍵字參數為:
["action", "next_reward", "next_done", "next_terminated"]
+ actor、value 和 qvalue 網路的 in_keys。傳回值是以下順序的 tensor 元組:["loss_actor", "loss_qvalue", "loss_value", "entropy"]
。範例
>>> import torch >>> import torch >>> from torch import nn >>> from torchrl.data.tensor_specs import OneHot >>> from torchrl.modules.distributions.discrete import OneHotCategorical >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.iql import DiscreteIQLLoss >>> _ = torch.manual_seed(42) >>> n_act, n_obs = 4, 3 >>> spec = OneHot(n_act) >>> module = SafeModule(nn.Linear(n_obs, n_act), in_keys=["observation"], out_keys=["logits"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["logits"], ... out_keys=["action"], ... spec=spec, ... distribution_class=OneHotCategorical) >>> qvalue = SafeModule( ... nn.Linear(n_obs, n_act), ... in_keys=["observation"], ... out_keys=["state_action_value"], ... ) >>> value = SafeModule( ... nn.Linear(n_obs, 1), ... in_keys=["observation"], ... out_keys=["state_value"], ... ) >>> loss = DiscreteIQLLoss(actor, qvalue, value) >>> batch = [2, ] >>> action = spec.rand(batch).long() >>> loss_actor, loss_qvalue, loss_value, entropy = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_observation=torch.zeros(*batch, n_obs), ... next_reward=torch.randn(*batch, 1)) >>> loss_actor.backward()
也可以使用
DiscreteIQLLoss.select_out_keys()
方法篩選輸出鍵。範例
>>> _ = loss.select_out_keys('loss_actor', 'loss_qvalue', 'loss_value') >>> loss_actor, loss_qvalue, loss_value = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_observation=torch.zeros(*batch, n_obs), ... next_reward=torch.randn(*batch, 1)) >>> loss_actor.backward()
- forward(tensordict: TensorDictBase = None) TensorDictBase ¶
它旨在讀取一個輸入 TensorDict 並傳回另一個具有名為 “loss*” 的損失鍵的 tensordict。
將損失分解為其組成部分,然後可以由訓練器用來記錄整個訓練過程中的各種損失值。輸出 tensordict 中存在的其他純量也會被記錄。
- 參數:
tensordict – 一個輸入 tensordict,包含計算損失所需的值。
- 傳回:
一個沒有批次維度的新 tensordict,包含各種損失純量,這些純量將被命名為 “loss*”。必須以這個名稱傳回損失,因為它們會在反向傳播之前被訓練器讀取。