捷徑

DiscreteIQLLoss

class torchrl.objectives.DiscreteIQLLoss(*args, **kwargs)[原始碼]

離散 IQL 損失的 TorchRL 實作。

發表於「具有隱式 Q-Learning 的離線強化學習」https://arxiv.org/abs/2110.06169

參數:
  • actor_network (ProbabilisticActor) – 隨機 actor

  • qvalue_network (TensorDictModule) – Q(s, a) 參數模型。

  • value_network (TensorDictModule, 選用) – V(s) 參數模型。

關鍵字引數:
  • action_space (strTensorSpec) – 動作空間。必須是 "one-hot""mult_one_hot""binary""categorical" 之一,或是對應規範的實例 (torchrl.data.OneHottorchrl.data.MultiOneHottorchrl.data.Binarytorchrl.data.Categorical)。

  • num_qvalue_nets (integer, 選用) – 使用的 Q 值網路數量。預設值為 2

  • loss_function (str, 選用) – 要與值函數損失一起使用的損失函數。預設值為“smooth_l1”

  • temperature ( float, optional) – 反向溫度(beta)。對於較小的超參數值,目標函數的行為類似於行為克隆,而對於較大的值,它試圖恢復 Q 函數的最大值。

  • expectile ( float, optional) – expectile \(\tau\)。 較大的 \(\tau\) 值對於需要動態規劃(“stichting”)的 antmaze 任務至關重要。

  • priority_key (str, optional) – [已棄用,請改用 .set_keys(priority_key=priority_key)] tensordict 鍵,用於寫入優先權(用於優先權重播緩衝區)。預設值為 “td_error”

  • separate_losses (bool, optional) – 如果 True,則 policy 和 critic 之間共享的參數僅會在 policy 損失上進行訓練。預設值為 False,即梯度會傳播到 policy 和 critic 損失的共享參數。

  • reduction (str, optional) – 指定要應用於輸出的歸約方式: "none" | "mean" | "sum""none": 不應用歸約, "mean": 輸出之總和將除以輸出中的元素數量, "sum": 輸出將被加總。預設值: "mean"

範例

>>> import torch
>>> from torch import nn
>>> from torchrl.data.tensor_specs import OneHot
>>> from torchrl.modules.distributions.discrete import OneHotCategorical
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.iql import DiscreteIQLLoss
>>> from tensordict import TensorDict
>>> n_act, n_obs = 4, 3
>>> spec = OneHot(n_act)
>>> module = SafeModule(nn.Linear(n_obs, n_act), in_keys=["observation"], out_keys=["logits"])
>>> actor = ProbabilisticActor(
...     module=module,
...     in_keys=["logits"],
...     out_keys=["action"],
...     spec=spec,
...     distribution_class=OneHotCategorical)
>>> qvalue = SafeModule(
...     nn.Linear(n_obs, n_act),
...     in_keys=["observation"],
...     out_keys=["state_action_value"],
... )
>>> value = SafeModule(
...     nn.Linear(n_obs, 1),
...     in_keys=["observation"],
...     out_keys=["state_value"],
... )
>>> loss = DiscreteIQLLoss(actor, qvalue, value)
>>> batch = [2, ]
>>> action = spec.rand(batch).long()
>>> data = TensorDict({
...         "observation": torch.randn(*batch, n_obs),
...         "action": action,
...         ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool),
...         ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool),
...         ("next", "reward"): torch.randn(*batch, 1),
...         ("next", "observation"): torch.randn(*batch, n_obs),
...     }, batch)
>>> loss(data)
TensorDict(
    fields={
        entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

此類別也與非 tensordict 型模組相容,並且可以在不使用任何與 tensordict 相關的原始元素的情況下使用。在這種情況下,預期的關鍵字參數為: ["action", "next_reward", "next_done", "next_terminated"] + actor、value 和 qvalue 網路的 in_keys。傳回值是以下順序的 tensor 元組: ["loss_actor", "loss_qvalue", "loss_value", "entropy"]

範例

>>> import torch
>>> import torch
>>> from torch import nn
>>> from torchrl.data.tensor_specs import OneHot
>>> from torchrl.modules.distributions.discrete import OneHotCategorical
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.iql import DiscreteIQLLoss
>>> _ = torch.manual_seed(42)
>>> n_act, n_obs = 4, 3
>>> spec = OneHot(n_act)
>>> module = SafeModule(nn.Linear(n_obs, n_act), in_keys=["observation"], out_keys=["logits"])
>>> actor = ProbabilisticActor(
...     module=module,
...     in_keys=["logits"],
...     out_keys=["action"],
...     spec=spec,
...     distribution_class=OneHotCategorical)
>>> qvalue = SafeModule(
...     nn.Linear(n_obs, n_act),
...     in_keys=["observation"],
...     out_keys=["state_action_value"],
... )
>>> value = SafeModule(
...     nn.Linear(n_obs, 1),
...     in_keys=["observation"],
...     out_keys=["state_value"],
... )
>>> loss = DiscreteIQLLoss(actor, qvalue, value)
>>> batch = [2, ]
>>> action = spec.rand(batch).long()
>>> loss_actor, loss_qvalue, loss_value, entropy = loss(
...     observation=torch.randn(*batch, n_obs),
...     action=action,
...     next_done=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_observation=torch.zeros(*batch, n_obs),
...     next_reward=torch.randn(*batch, 1))
>>> loss_actor.backward()

也可以使用 DiscreteIQLLoss.select_out_keys() 方法篩選輸出鍵。

範例

>>> _ = loss.select_out_keys('loss_actor', 'loss_qvalue', 'loss_value')
>>> loss_actor, loss_qvalue, loss_value = loss(
...     observation=torch.randn(*batch, n_obs),
...     action=action,
...     next_done=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_observation=torch.zeros(*batch, n_obs),
...     next_reward=torch.randn(*batch, 1))
>>> loss_actor.backward()
forward(tensordict: TensorDictBase = None) TensorDictBase

它旨在讀取一個輸入 TensorDict 並傳回另一個具有名為 “loss*” 的損失鍵的 tensordict。

將損失分解為其組成部分,然後可以由訓練器用來記錄整個訓練過程中的各種損失值。輸出 tensordict 中存在的其他純量也會被記錄。

參數:

tensordict – 一個輸入 tensordict,包含計算損失所需的值。

傳回:

一個沒有批次維度的新 tensordict,包含各種損失純量,這些純量將被命名為 “loss*”。必須以這個名稱傳回損失,因為它們會在反向傳播之前被訓練器讀取。

文件

取得 PyTorch 的完整開發者文件

檢視文件

教學課程

取得針對初學者和進階開發者的深入教學課程

檢視教學課程

資源

尋找開發資源並取得您問題的解答

檢視資源