捷徑

IQLLoss

class torchrl.objectives.IQLLoss(*args, **kwargs)[來源]

IQL 損失的 TorchRL 實作。

發表於 “Offline Reinforcement Learning with Implicit Q-Learning” https://arxiv.org/abs/2110.06169

參數:
  • actor_network (ProbabilisticActor) – 隨機 actor

  • qvalue_network (TensorDictModule) –

    Q(s, a) 參數模型。如果提供單個 qvalue_network 實例,它將被複製 num_qvalue_nets 次。如果傳遞模組清單,除非它們共享相同的身分 (在這種情況下,原始參數將被擴展),否則它們的參數將被堆疊。

    警告

    如果傳遞參數清單,它將 __不會__ 與策略參數進行比較,並且所有參數都將被視為未綁定。

  • value_network (TensorDictModule, optional) – V(s) 參數模型。

關鍵字參數:
  • num_qvalue_nets (integer, optional) – 使用的 Q-Value 網路數量。預設為 2

  • loss_function (str, optional) – 與 value function 損失一起使用的損失函數。預設為 “smooth_l1”

  • temperature (float, optional) – 反向溫度 (beta)。對於較小的超參數值,目標的行為類似於行為克隆,而對於較大的值,它嘗試恢復 Q 函數的最大值。

  • expectile (float, optional) – expectile \(\tau\)。較大的 \(\tau\) 值對於需要動態規劃 (“stichting”) 的 antmaze 任務至關重要。

  • priority_key (str, optional) – [已棄用,請改用 .set_keys(priority_key=priority_key)] tensordict 鍵,用於寫入優先順序 (用於優先重播緩衝區)。預設為 “td_error”

  • separate_losses (bool, optional) – 如果 True,策略和 critic 之間的共享參數將僅在策略損失上進行訓練。預設為 False,即梯度會傳播到策略和 critic 損失的共享參數。

  • reduction (str, optional) – 指定套用至輸出的 reduction 方式: "none" | "mean" | "sum""none":不套用任何 reduction,"mean":輸出的總和將除以輸出中的元素數量,"sum":輸出將被加總。預設值:"mean"

範例

>>> import torch
>>> from torch import nn
>>> from torchrl.data import Bounded
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.iql import IQLLoss
>>> from tensordict import TensorDict
>>> n_act, n_obs = 4, 3
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
>>> actor = ProbabilisticActor(
...     module=module,
...     in_keys=["loc", "scale"],
...     spec=spec,
...     distribution_class=TanhNormal)
>>> class QValueClass(nn.Module):
...     def __init__(self):
...         super().__init__()
...         self.linear = nn.Linear(n_obs + n_act, 1)
...     def forward(self, obs, act):
...         return self.linear(torch.cat([obs, act], -1))
>>> qvalue = SafeModule(
...     QValueClass(),
...     in_keys=["observation", "action"],
...     out_keys=["state_action_value"],
... )
>>> value = SafeModule(
...     nn.Linear(n_obs, 1),
...     in_keys=["observation"],
...     out_keys=["state_value"],
... )
>>> loss = IQLLoss(actor, qvalue, value)
>>> batch = [2, ]
>>> action = spec.rand(batch)
>>> data = TensorDict({
...         "observation": torch.randn(*batch, n_obs),
...         "action": action,
...         ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool),
...         ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool),
...         ("next", "reward"): torch.randn(*batch, 1),
...         ("next", "observation"): torch.randn(*batch, n_obs),
...     }, batch)
>>> loss(data)
TensorDict(
    fields={
        entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

此類別也與非基於 tensordict 的模組相容,並且可以在不使用任何 tensordict 相關的 primitive 的情況下使用。在這種情況下,預期的關鍵字引數為: ["action", "next_reward", "next_done", "next_terminated"] + actor、value 和 qvalue 網路的 in_keys。回傳值是一個 tensors 的 tuple,順序如下: ["loss_actor", "loss_qvalue", "loss_value", "entropy"]

範例

>>> import torch
>>> from torch import nn
>>> from torchrl.data import Bounded
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.iql import IQLLoss
>>> _ = torch.manual_seed(42)
>>> n_act, n_obs = 4, 3
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
>>> actor = ProbabilisticActor(
...     module=module,
...     in_keys=["loc", "scale"],
...     spec=spec,
...     distribution_class=TanhNormal)
>>> class QValueClass(nn.Module):
...     def __init__(self):
...         super().__init__()
...         self.linear = nn.Linear(n_obs + n_act, 1)
...     def forward(self, obs, act):
...         return self.linear(torch.cat([obs, act], -1))
>>> qvalue = SafeModule(
...     QValueClass(),
...     in_keys=["observation", "action"],
...     out_keys=["state_action_value"],
... )
>>> value = SafeModule(
...     nn.Linear(n_obs, 1),
...     in_keys=["observation"],
...     out_keys=["state_value"],
... )
>>> loss = IQLLoss(actor, qvalue, value)
>>> batch = [2, ]
>>> action = spec.rand(batch)
>>> loss_actor, loss_qvalue, loss_value, entropy = loss(
...     observation=torch.randn(*batch, n_obs),
...     action=action,
...     next_done=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_observation=torch.zeros(*batch, n_obs),
...     next_reward=torch.randn(*batch, 1))
>>> loss_actor.backward()

也可以使用 IQLLoss.select_out_keys() 方法過濾輸出鍵。

範例

>>> _ = loss.select_out_keys('loss_actor', 'loss_qvalue')
>>> loss_actor, loss_qvalue = loss(
...     observation=torch.randn(*batch, n_obs),
...     action=action,
...     next_done=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
...     next_observation=torch.zeros(*batch, n_obs),
...     next_reward=torch.randn(*batch, 1))
>>> loss_actor.backward()
forward(tensordict: TensorDictBase = None) TensorDictBase[source]

它被設計為讀取一個輸入的 TensorDict 並回傳另一個帶有損失鍵 (名稱為 "loss*") 的 tensordict。

將損失分解為其組成部分可以讓訓練器在訓練過程中記錄各種損失值。輸出 tensordict 中存在的其他純量也會被記錄。

參數:

tensordict – 一個輸入的 tensordict,其中包含計算損失所需的值。

回傳值:

一個新的 tensordict,沒有批次維度,包含各種損失純量,它們將被命名為 "loss*"。 重要的是,損失必須以這個名稱回傳,因為它們會在反向傳播之前被訓練器讀取。

static loss_value_diff(diff, expectile=0.8)[source]

用於 iql expectile 價值差異的損失函數。

make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[source]

價值函數建構子。

如果需要非預設的價值函數,則必須使用此方法來構建它。

參數:
  • value_type (ValueEstimators) – 一個 ValueEstimators 列舉類型,指示要使用的價值函數。 如果沒有提供,將使用儲存在 default_value_estimator 屬性中的預設值。 產生的價值估計器類別將在 self.value_type 中註冊,以允許未來的改進。

  • **hyperparams – 用於價值函數的超參數。如果沒有提供,將使用 default_value_kwargs() 指示的值。

範例

>>> from torchrl.objectives import DQNLoss
>>> # initialize the DQN loss
>>> actor = torch.nn.Linear(3, 4)
>>> dqn_loss = DQNLoss(actor, action_space="one-hot")
>>> # updating the parameters of the default value estimator
>>> dqn_loss.make_value_estimator(gamma=0.9)
>>> dqn_loss.make_value_estimator(
...     ValueEstimators.TD1,
...     gamma=0.9)
>>> # if we want to change the gamma value
>>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)

文件

取得 PyTorch 的完整開發人員文件

檢視文件

教學

取得初學者和進階開發人員的深入教學

檢視教學

資源

尋找開發資源並取得問題解答

檢視資源