Intel® Extension for PyTorch* 後端於 Intel® CPU 上¶
建立於:2023 年 10 月 03 日 | 最後更新:2024 年 06 月 11 日 | 最後驗證:2024 年 11 月 05 日
為了在 Intel® CPU 上更好地使用 torch.compile,Intel® Extension for PyTorch* 實作了一個 ipex
後端。 它的目標是提高 Intel 平台上硬體資源使用的效率,以獲得更好的效能。ipex 後端使用 Intel® Extension for PyTorch* 中設計的進一步客製化來實作模型編譯。
使用範例¶
訓練 FP32¶
查看下面的範例,了解如何使用 ipex 後端與 torch.compile 進行具有 FP32 資料類型的模型訓練。
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = 'datasets/cifar10/'
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=128
)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
model.train()
#################### code changes ####################
import intel_extension_for_pytorch as ipex
# Invoke the following API optionally, to apply frontend optimizations
model, optimizer = ipex.optimize(model, optimizer=optimizer)
compile_model = torch.compile(model, backend="ipex")
######################################################
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = compile_model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
訓練 BF16¶
查看下面的範例,了解如何使用 ipex 後端與 torch.compile 進行具有 BFloat16 資料類型的模型訓練。
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = 'datasets/cifar10/'
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=128
)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
model.train()
#################### code changes ####################
import intel_extension_for_pytorch as ipex
# Invoke the following API optionally, to apply frontend optimizations
model, optimizer = ipex.optimize(model, dtype=torch.bfloat16, optimizer=optimizer)
compile_model = torch.compile(model, backend="ipex")
######################################################
with torch.cpu.amp.autocast():
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = compile_model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
推論 FP32¶
查看下面的範例,了解如何使用 ipex 後端與 torch.compile 進行具有 FP32 資料類型的模型推論。
import torch
import torchvision.models as models
model = models.resnet50(weights='ResNet50_Weights.DEFAULT')
model.eval()
data = torch.rand(1, 3, 224, 224)
#################### code changes ####################
import intel_extension_for_pytorch as ipex
# Invoke the following API optionally, to apply frontend optimizations
model = ipex.optimize(model, weights_prepack=False)
compile_model = torch.compile(model, backend="ipex")
######################################################
with torch.no_grad():
compile_model(data)
推論 BF16¶
查看下面的範例,了解如何使用 ipex 後端與 torch.compile 進行具有 BFloat16 資料類型的模型推論。
import torch
import torchvision.models as models
model = models.resnet50(weights='ResNet50_Weights.DEFAULT')
model.eval()
data = torch.rand(1, 3, 224, 224)
#################### code changes ####################
import intel_extension_for_pytorch as ipex
# Invoke the following API optionally, to apply frontend optimizations
model = ipex.optimize(model, dtype=torch.bfloat16, weights_prepack=False)
compile_model = torch.compile(model, backend="ipex")
######################################################
with torch.no_grad(), torch.autocast(device_type="cpu", dtype=torch.bfloat16):
compile_model(data)